Project Title: FBXL5, role in embryonic stem cells differentiation towards cardiac cells

Supervisor: José Bragança, PhD

Institution: CBMR-University of Algarve

Webpage: http://jembibet.wix.com/stemcelllabjbraganca

Contact: email: jebraganca@ualg.pt / phone: 289244483

Location of research lab/research center:

Centro de Investigação em Biomedicina (CBMR) University of Algarve, Bld. 8, Laboratory 1.12, Campus of Gambelas 8005-139 Faro, Portugal

Summary: (1000 characters)

Genetic alterations of the transcriptional regulators CITED2, HIF-1 α (hypoxia-inducible factor-1 α) or p300, in mouse models, result in cardiovascular defects [1-4]. In addition, CITED2 and HIF-1 are important for self-renewal and cardiac differentiation of embryonic stem cells (ESC) [5]. Recently, we showed that the E3 ubiquitin ligase FBXL5 modulates the transcriptional activity of HIF-1 α through the degradation of CITED2, controlling HIF-1 α access to its co-activators p300/CBP [6]. In mouse ESC, FBXL5 overexpression decreases CITED2 expression and triggers the expression of mesoderm and endoderm early markers, suggesting a spontaneous differentiation [6]. Interestingly, the stability and function of FBXL5 are dependent on iron and oxygen availability, and both non-physiological hypoxia and/or iron cardiac contents are risk factors for congenital cardiovascular defects [1]. Moreover, recent evidence indicated that FBXL5 may play a role in mouse cardiovascular development. We hypothesize that the FBXL5-CITED2-p300/CBP-HIF-1 α protein network is involved in normal cardiogenesis, and may be critical for the fine-tuning of HIF-1 α transcriptional activity during this process. In the present proposal, we intend to investigate the role of FBXL5 within this protein network, ant its function during cardiac differentiation of mouse ESC.

Bibliographic references

(* indicates Joint first co-authors)

- 1. Dunwoodie SL. The role of hypoxia in development of the Mammalian embryo. Dev Cell 2009;17:755-773.
- 2. Bamforth SD*, Bragança J*, Eloranta JJ, Murdoch JN, Marques FIR, Kranc KR, et al. Cardiac malformations, adrenal agenesis, neural crest defects and exencephaly in mice lacking Cited2, a new Tfap2 co-activator. **Nat Genet** 2001;29:469-474.
- 3. Bamforth SD*, Bragança J*, Farthing CR*, Schneider JE, Broadbent C, Michell AC, et al. Cited2 controls left-right patterning and heart development through a Nodal-Pitx2c pathway. **Nat Genet** 2004;36:1189-1196.
- 4. MacDonald ST, Bamforth SD, Bragança J, Chen C-M, Broadbent C, Schneider JE, et al. A cell-autonomous role of Cited2 in controlling myocardial and coronary vascular development. **Eur Heart J** 2013 April 14, 2012;34:2557-2567.
- Kranc KR, Oliveira DV, Armesilla-Diaz A, Pacheco-Leyva I, Matias AC, Escapa AL, et al. ... and Bragança J. Acute loss of Cited2 impairs Nanog expression and decreases self-renewal of mouse embryonic stem cells. Stem Cells 2015;33:699-712.
- Machado-Oliveira G, Guerreiro E, Matias AC, Facucho-Oliveira J, Pacheco-Leyva I, Bragança J. FBXL5 modulates HIF-1a transcriptional activity by degradation of CITED2. Arch Biochem Biophys 2015;576:61–72.