Project Title: Decipher the pro-atherogenic potential of a novel identified family

of lipids in cardiovascular disease patients in vivo using zebrafish larvae

Supervisor: Otília V. Vieira, Principal Investigator Institution: NOVA MEDICAL SCHOOL, New University of Lisbon Webpage: http://cedoc.unl.pt/lysosomes-in-chronic-human-pathologies-andinfection/ Contact: otilia.vieira@nms.unl.pt

Location of research lab/research center: CEDOC/NOVA MEDICAL SCHOOL

Summary:

Atherosclerosis is the major cause of cardiovascular disease (CVD) in the world. It results from constitutive uptake by macrophages (M ϕ) of modified Low Density Lipoproteins (LDL) trapped in the arterial *intima*. One of the modifications that LDL undergo is lipid oxidation. With time, the uptake of modified LDL by M ϕ leads to lysosomal dysfunction and irreversible lipid accumulation. We have determined the lipidome of CVD patients which revealed that the concentration of one particular family of previously not investigated oxidized-lipids, Cholesteryl hemiesters (ChE), is higher in the blood plasma of CVD patients than in normal donors. Furthermore, M ϕ exposed to a single component of this family of lipids become lipidotic and pro-inflammatory. Thus, the aim of this proposal is to study the molecular mechanisms behind the pro-atherogenic activity of ChE *in vivo* in zebrafish larvae, a model that has recently been shown to be suitable for this purpose. To achieve our aims we will apply molecular cell biology and advanced microscopy techniques among others.

Bibliographic references:

1. M. Encarnação, *at al.* (2016) A Rab3a-dependent complex essential for lysosome positioning and plasma membrane repair. <u>*J Cell Biol.*</u> 2016 Jun 20;213(6):631-40. doi: 10.1083/jcb.201511093. J. Cell Biol. 213 (6) 631-640. *** Spotlight in J. Cell Biol. 2016 213:613-615. Recommended twice in F1000Prime.**

2. N. Domingues, L. et al (2017) Cholesteryl hemiesters alter lysosome structure and function and induce proinflammatory cytokine production in macrophages. <u>BBA - Molecular and Cell Biology of Lipids</u>. Volume 1862, Issue 2, February 2017, Pages 210–220. doi: 10.1016/j.bbalip.2016.10.009

3. Santarino IB, *et al* (2017) Involvement of the p62/NRF2 signal transduction pathway on erythrophagocytosis. *Sci Rep.* 2017 Jul 19;7(1):5812. doi: 10.1038/s41598-017-05687-1